Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Methylpyrazine 1,4-dioxide

Jessica L. Gratton and Jacqueline M. Knaust*

Allegheny College, Chemistry Department, 520 North Main St., Meadville, PA 16335, USA
Correspondence e-mail: jknaust@allegheny.edu
Received 2 November 2009; accepted 4 November 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.046 ; w R$ factor $=0.122$; data-to-parameter ratio $=20.6$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$, was prepared from 2methylpyrazine, acetic acid and hydrogen peroxide. In the crystal, $\pi-\pi$ stacking interactions between neighboring molecules are observed, with a centroid-centroid distance of $3.7370 \AA$, an interplanar distance of $3.167 \AA$, and a slippage of $1.984 \AA$. Each molecule is linked to four neighbors through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, forming onedimensional ribbons.

Related literature

For the synthesis of $2,2^{\prime}$-bipyridine N, N^{\prime}-dioxide, see: Simpson et al. (1963). For the synthesis of lanthanide coordination networks with pyrazine N, N '-dioxide, see: Cardoso et al. (2001); Sun et al. (2004). For the use of 2-methylpyrazine 1,4dioxide in the synthesis of a cadmium (II) coordination network, see: Shi et al. (2006). For the use of 2-methylpyrazine 1,4-dioxide in the synthesis of several molecular complexes, see: Sun et al. (2005); Xu et al. (2005a,b).

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=126.12$
Orthorhombic, Pbca
$a=6.3953$ (9) A
$b=12.2472$ (18) \AA
$c=13.6613(19) \AA$

$$
\begin{aligned}
& V=1070.0(3) \AA^{3} \\
& Z=8 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& 0.53 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.763, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046 \quad 83$ parameters
$w R\left(F^{2}\right)=0.122 \quad \mathrm{H}$-atom parameters constrained
$S=1.07$
1708 reflections

5556 measured reflections 1708 independent reflections 1407 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}{ }^{\text {i }}$	0.93	2.31	3.2224 (16)	165
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.23	3.1405 (17)	167
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.29	3.2090 (15)	168

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (iii) $x+1, y, z$.
Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

The authors are thankful to Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge the STaRBURSTT CyberInstrumentation Consortium for assistance with the crystallography.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2250).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Cardoso, M. C. C., Zinner, L. B., Zukerman-Scheptor, J., Araújo Melo, D. M. \& Vincentini, G. J. (2001). J. Alloys Compd, 323-324, 22-25.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shi, J. M., Zhang, F. X., Zhang, X., Xu, H. Y., Lui, L. D. \& Ma, J. P. (2006). Chin. J. Struct. Chem. 20, 1238-1242.
Simpson, P. G., Vinciguerra, A. \& Quagliano, J. V. (1963). Inorg. Chem. 2, 282286.

Sun, H. L., Gao, S., Ma, B. Q., Chang, F. \& Fu, W. F. (2004). Microporous Mesoporous Mater. 73, 89-95.
Sun, Y.-M., Shi, J.-M. \& Zhang, X. (2005). Acta Cryst. E61, m1501-m1502.
Xu, W., Shi, J. M. \& Zhang, X. (2005a). Acta Cryst. E61, m854-m855.
Xu, W., Shi, J.-M. \& Zhang, X. (2005b). Acta Cryst. E61, m2194-m2195.

supplementary materials

Acta Cryst. (2009). E65, o3040 [doi:10.1107/S1600536809046534]

2-Methylpyrazine 1,4-dioxide

J. L. Gratton and J. M. Knaust

Comment

The use of pyrazine N, N^{\prime}-dioxide in the synthesis of lanthanide coordination networks has been of recent interest (Cardoso et al. (2001), Sun et al. (2004)). Shi et al. (2006) recently reported the use 2-methylpyrazine 1,4-dioxide in the synthesis of a cadmium (II) coordination network, and Sun et al. (2005), Xu et al. (2005a), and Xu et al. (2005b) report its use in the synthesis of several molecular complexes. The title compound was prepared using the reaction the conditions described by Simpson et al. (1963) to prepare 2,2'-bipyridine N, N-dioxide.

The asymmetric unit of the title compound contains one 2-methylpyrazine 1,4-dioxide molecule (Figure 1). π - π stacking interactions with a centroid to centroid distance of $3.7370 \AA$, an interplanar distance of $3.167 \AA$, and a slippage of $1.984 \AA$. are observed between neighboring N -oxide molecules [symmetry code: $-x+1,-y+1,-z+1$] (Figure 2). The title compound forms six $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with four neighboring N -oxide molecules, and these hydrogen bonding interactions result in the formation of one-dimensional ribbons that propagate parallel to the a axis (Figure 4). As seen in the packing diagram, each one-dimensional ribbon is surrounded by six similar ribbons. (Figure 5)

Experimental

2-Methylpyrazine ($5.871 \mathrm{ml}, 64.0 \mathrm{mmol}$), acetic acid (75 ml), and 30% hydrogen peroxide (13 ml) were heated at $343-353$ K for 3 h . Additional hydrogen peroxide (9 ml) was added, and heating was continued. After an additional 19 h of heating the solution was cooled to room temperature. Crystals formed upon the addition of acetone ($1 L$) and cooling to 273 K , and were recrystallized from hot water by addition of excess acetone and cooling to 273 K .

Refinement

All H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ $=1.2$ (1.5 for methyl groups) times $U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Fig. 2. π - π interactions between neighboring 2-methylpyrazine 1,4-dioxide molecules.

Fig. 3. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions between neighboring 2-methylpyrazine 1,4dioxide molecules. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) $x-1, y$, z; (ii) $x-1 / 2, y,-z+3 / 2$; (iii) $x+1, y, z$; (iv) $x+1 / 2, y,-z+3 / 2$.

Fig. 4. Packing of the title compound viewed down the a axis. Color scheme indicates individual $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded ribbons. Hydrogen bonds are shown as dashed lines

2-Methylpyrazine 1,4-dioxide

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=126.12$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=6.3953$ (9) \AA
$b=12.2472(18) \AA$
$c=13.6613$ (19) \AA
$V=1070.0(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.763, T_{\text {max }}=1.000$
5556 measured reflections
$F_{000}=528$
$D_{\mathrm{x}}=1.566 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1890 reflections
$\theta=3.0-31.5^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Rod, colorless
$0.53 \times 0.20 \times 0.15 \mathrm{~mm}$

1708 independent reflections
1407 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=31.8^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-9 \rightarrow 8$
$k=-17 \rightarrow 8$
$l=-11 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w R\left(F^{2}\right)=0.122$
$S=1.07$
1708 reflections
83 parameters

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0537 P)^{2}+0.6359 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $F^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on $F^{\wedge} 2^{\wedge}$, conventional R-factors R are based on F, with F set to zero for negative $F^{\wedge} 2^{\wedge}$. The threshold expression of $F^{\wedge} 2^{\wedge}>\sigma\left(F^{\wedge} 2^{\wedge}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.33101(13)$	$0.64269(8)$	$0.41676(7)$	$0.0164(2)$
O2	$0.99921(14)$	$0.59296(8)$	$0.64921(7)$	$0.0183(2)$
N1	$0.49403(15)$	$0.63273(8)$	$0.47271(8)$	$0.0122(2)$
N2	$0.83721(15)$	$0.60672(9)$	$0.59294(8)$	$0.0128(2)$
C1	$0.47150(19)$	$0.62449(10)$	$0.57203(9)$	$0.0136(2)$
H1	0.3386	0.6279	0.5995	0.016^{*}
C2	$0.64141(19)$	$0.61132(10)$	$0.63137(9)$	$0.0142(2)$
H2	0.6230	0.6055	0.6987	0.017^{*}
C3	$0.86033(18)$	$0.61629(10)$	$0.49464(9)$	$0.0126(2)$
H3	0.9940	0.6141	0.4679	0.015^{*}
C4	$0.69092(18)$	$0.62919(10)$	$0.43327(9)$	$0.0125(2)$
C5	$0.7106(2)$	$0.63969(11)$	$0.32565(9)$	$0.0165(2)$
H5A	0.6439	0.7059	0.3046	0.025^{*}
H5B	0.6448	0.5783	0.2946	0.025^{*}
H5C	0.8559	0.6417	0.3080	0.025^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0092(4)$	$0.0223(5)$	$0.0177(4)$	$0.0005(3)$	$-0.0044(3)$	$0.0008(3)$
O2	$0.0112(4)$	$0.0298(5)$	$0.0140(4)$	$0.0004(3)$	$-0.0053(3)$	$0.0002(4)$
N 1	$0.0090(4)$	$0.0139(4)$	$0.0138(5)$	$0.0001(3)$	$-0.0009(4)$	$-0.0004(3)$
N 2	$0.0103(4)$	$0.0169(5)$	$0.0113(5)$	$-0.0005(3)$	$-0.0013(4)$	$-0.0003(4)$
C 1	$0.0118(5)$	$0.0155(5)$	$0.0136(5)$	$0.0000(4)$	$0.0027(4)$	$0.0001(4)$
C 2	$0.0137(5)$	$0.0167(5)$	$0.0122(5)$	$-0.0006(4)$	$0.0026(4)$	$-0.0006(4)$

C3	$0.0097(4)$	$0.0160(5)$	$0.0120(5)$	$-0.0007(4)$	$0.0013(4)$	$-0.0006(4)$
C4	$0.0104(5)$	$0.0143(5)$	$0.0126(5)$	$0.0000(4)$	$0.0008(4)$	$-0.0004(4)$
C5	$0.0142(5)$	$0.0242(6)$	$0.0112(5)$	$0.0008(4)$	$0.0007(4)$	$0.0015(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 1$	$1.2985(13)$
$\mathrm{O} 2-\mathrm{N} 2$	$1.3011(13)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3681(16)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.3703(15)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.3561(16)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.3590(15)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3653(17)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$120.41(10)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4$	$120.62(10)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$118.97(10)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 3$	$120.63(10)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2$	$120.72(10)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$118.65(10)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$120.92(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.5
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.5
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 1$	$120.59(11)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	119.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.3789(16)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.4813(18)$
C5-H5A	0.9600
C5-H5B	0.9600
C5-H5C	0.9600
N2-C3-C4	$121.75(11)$
N2-C3-H3	119.1
C4-C3-H3	119.1
N1-C4-C3	$119.11(11)$
N1-C4-C5	$117.75(11)$
C3-C4-C5	$123.14(11)$
C4-C5-H5A	109.5
C4-C5-H5B	109.5
H5A-C5-H5B	109.5
C4-C5-H5C	109.5
H5A-C5-H5C	109.5
H5B-C5-H5C	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots 2^{\mathrm{i}}$	0.93	2.31	$3.2224(16)$	165
$\mathrm{C} 2 — \mathrm{H} 2 \cdots 2^{\mathrm{ii}}$	0.93	2.23	$3.1405(17)$	167
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.29	$3.2090(15)$	168

Symmetry codes: (i) $x-1, y, z$; (ii) $x-1 / 2, y,-z+3 / 2$; (iii) $x+1, y, z$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

supplementary materials

Fig. 4

